HoloA cHiC@S cOMeNtEn, ComEnTHeN oki ESpeRO lES aGRadE............................

viernes, 30 de abril de 2010

Movimiento


energia

formas de energia


Transformacion de la energia





temodinamica

circuito paralelo


El circuito paralelo es una conexión donde, los bornes o terminales de entrada de todos los dispositivosconectados coincidan entre sí, lo mismo que sus terminales de salida.
Siguiendo un símil hidráulico, dos depósitos de agua conectados en paralelo tendrán una entrada común que alimentará simultáneamente a ambos, así como una salida común que drenará a ambos a la vez. Las bombillas de iluminación de una casa forman un circuito en paralelo.

circuito en serie


Un circuito en serie es una configuración de conexión en la que los bornes o terminales de los dispositivos (generadores, resistencias, condensadores, interruptores, entre otros.) se conectan secuencialmente. La terminal de salida de un dispositivo se conecta a la terminal de entrada del dispositivo siguiente.
Siguiendo un símil hidráulico, dos depósitos de agua se conectarán en serie si la salida del primero se conecta a la entrada del segundo. Una batería eléctrica suele estar formada por varias pilas eléctricas conectadas en serie, para alcanzar así el voltaje que se precise.

circuito electrico


Se denomina circuito eléctrico a una serie de elementos o componentes eléctricos o electrónicos, tales como resistencias, inductancias, condensadores, fuentes, y/o dispositivos electrónicos semiconductores, conectados eléctricamente entre sí con el propósito de generar, transportar o modificar señales electrónicas o eléctricas

potencia electrica

Se mide en Watts. Un watt=J/s. En el hogar lo que medimos es la potencia electrica. Energia que se puede liberar en un determinado tiempo. Es la energia gastada en un determinado tiempo= U/t
P=U/t=qV/t
P=IV
U=Pt
Intensidad de corriente electricaEs la carga que pasa por una seccion del conductor en un segundo
I=q/t
Donde: I(C/s=A), q (C) y t (s)

Ley de Coulomb

La ley de que la fuerza entre cargas eléctricas es inversamente proporcional al cuadrado de la distancia entre las cargas fue demostrada experimentalmente por el químico británico Joseph Priestley alrededor de 1766. Priestley también demostró que una carga eléctrica se distribuye uniformemente sobre la superficie de una esfera metálica hueca, y que en el interior de una esfera así no existen cargas ni campos eléctricos. Charles de Coulomb inventó una balanza de torsión para medir con precisión la fuerza que se ejerce entre las cargas eléctricas. Con ese aparato confirmó las observaciones de Priestley y demostró que la fuerza entre dos cargas también es proporcional al producto de las cargas individuales. La fuerza entre dos partículas con cargas q1 y q2 puede calcularse a partir de la Ley de Coulomb

Campo Electrico



Un campo eléctrico es una región del espacio donde se ponen de manifiesto los fenómenos eléctricos. Se representa por E y es de naturaleza vectorial. En el Sistema Internacional de unidades el campo eléctrico se mide en Newton/Culombio (N/C).
La región del espacio situada en las proximidades de un cuerpo cargado posee unas propiedades especiales. Si se coloca en cualquier punto de dicha región una carga eléctrica de prueba, se observa que se encuentra sometida a la acción de una fuerza. Este hecho se expresa diciendo que el cuerpo cargado ha creado un campo eléctrico. La intensidad de campo eléctrico en un punto se define como la fuerza que actúa sobre la unidad de carga situada en él. Si E es la intensidad de campo, sobre una carga q actuará una fuerza F



Donde:
E: magnitud del campo eléctrico puntual, N/C
q: carga de prueba, Coul
F: fuerza eléctrica generada por el campo, Newton


La dirección del campo eléctrico en cualquier punto viene dada por la de la fuerza que actúa sobre una carga positiva unidad colocada en dicho punto. Las líneas de fuerza en un campo eléctrico están trazadas de modo que son, en todos sus puntos, tangentes a la dirección del campo, y su sentido positivo se considera que es el que partiendo de las cargas positivas termina en las negativas

ley de gauss


En física y en análisis matemático, la ley de Gauss relaciona el flujo eléctrico a través de una superficie cerrada y la carga eléctrica encerrada en esta superficie. De esta misma forma, también relaciona la divergencia del campo eléctrico con la densidad de carga.
Superficie Gaussiana en donde se percibe el vector diferencial de área y el vector campo eléctrico. Detalle como dentro de la superficie se encuentra una carga eléctrica.

Ley de la mano derecha


La regla o ley de la mano derecha es un metodo para denominar direcciones vectoriales, y tiene como base los planos cartesianos. Se emplea prácticamente en dos maneras; la primera principalmente es para direcciones y movimientos vectoriales lineales, y la segunda para movimientos y direcciones rotacionales.


1º Ley: Dirección asociada con un par ordenado de sentidos

La primera aplicación está basada en la práctica ilustración de los cuatro dedos consecutivos de la mano derecha, empezando con el pulgar, índice, dedo medio y finalmente el anular, los cuales se posicionan apuntando a tres diferentes direcciones perpendiculares. Se inicia con la palma hacia arriba, y el pulgar determina la primera dirección vectorial. El ejemplo más común es el producto vectorial.


2º Ley: Dirección asociada a una vuelta

La segunda aplicación, como está más relacionada al movimiento rotacional, el pulgar apunta a una dirección mientras los demás dedos declaran la rotación natural. Esto significa, que si se coloca la mano cómodamente y el pulgar apuntara hacia arriba, entonces el movimiento o rotación es mostrado en una forma contraria al movimiento de las manecillas del reloj

magnetismo


El magnetismo es un fenómeno físico por el que los materiales ejercen fuerzas de atracción o repulsión sobre otros materiales. Hay algunos materiales conocidos que han presentado propiedades magnéticas detectables fácilmente como el níquel, hierro, cobalto y sus aleaciones que comúnmente se llaman imanes. Sin embargo todos los materiales son influenciados, de mayor o menor forma, por la presencia de un campo magnético
También el magnetismo tiene otras manifestaciones en física, particularmente como uno de los dos componentes de la onda electromagnética, como, por ejemplo, la luz.


Magnetismo, electricidad y relatividad especial
Campos y fuerzas magnéticas
El fenómeno del magnetismo es ejercido por un campo magnético, una corriente eléctrica o un dipolo magnético crea un campo magnético, éste al girar imparte una fuerza magnética a otras partículas que están en el campo.
Para una aproximación excelente (pero ignorando algunos efectos cuánticos, las ecuaciones de Maxwell (que simplifican la ley de Biot-Savart en el caso de corriente constante) describen el origen y el comportamiento de los campos que gobiernan esas fuerzas. Por lo tanto el magnetismo se observa siempre que partículas cargadas eléctricamente están en movimiento. Por ejemplo, del movimiento de electrones en una corriente eléctrica o en casos del movimiento orbital de los electrones alrededor del núcleo atómico. Estas también aparecen de un dipolo magnético intrínseco que aparece de los efectos cuánticos, del spin de la mecánica cuántica.
La misma situación que crea campos magnéticos (carga en movimiento en una corriente o en un átomo y dipolos magnéticos intrínsecos) son también situaciones en que el campo magnético causa sus efectos, creando una fuerza Cuando una partícula cargada se mueve a través de un campo magnético B, se ejerce una fuerza F dado por el producto cruzado.
donde la carga eléctrica de la partícula, es el vector velocidad de la partícula y es el camp magnétic. Debido a que esto es un producto cruz, la fuerza es perpendicular al movimiento de la partícula y al campo magnético.
La fuerza magnética no realiza trabajo mecánico en la partícula, esto cambiaría la dirección del movimiento de ésta, pero esto no causa su aumento o disminución de la velocidad. La magnitud de la fuerza es : donde es el ángulo entre los vectores y .`
Una herramienta para determinar la dirección del vector velocidad de una carga en movimiento, es siguiendo la ley de la mano derecha
El físico alemán Heinrich Lenz formuló lo que ahora se denomina la ley de Lenz, ésta da una dirección de la fuerza electromotriz (fem) y la corriente resultante de una inducción electromagnética.
Dipolos magnéticos
Se puede ver una muy común fuente de campo magnético en la naturaleza, un dipolo. Éste tiene un "polo sur" y un "polo norte", sus nombres se deben a que antes se usaban los magnetos como brújulas, que interactuaban con el campo magnético terrestre, para indicar el norte y el sur del globo.
Un campo magnético contiene energía y sistemas físicos que se estabilizan con configuraciones de menor energía. Por lo tanto, cuando se encuentra en un campo magnético, un dipolo magnético tiende a alinearse solo con una polaridad diferente a la del campo, lo que cancela al campo lo máximo posible y disminuye la energía recolectada en el campo al mínimo. Por ejemplo, dos barras magnéticas idénticas pueden estar una a lado de otra normalmente alineadas de norte a sur, resultando en un campo magnético más pequeño y resiste cualquier intento de reorientar todos sus puntos en una misma dirección. La energía requerida para reorientarlos en esa configuración es entonces recolectada en el campo magnético resultante, que es el doble de la magnitud del campo de un magneto individual. (Esto es porque un magneto usado como brújula interactúa con el campo magnético terrestre para indicar Norte y Sur)
Una alternativa formulada, equivalente, que es fácil de aplicar pero ofrece una menor visión, es que un dipolo magnético en un campo magnético experimenta un momento de un par de fuerzas y una fuerza que puede ser expresada en términos de un campo y de la magnitud del dipolo

leyes de Newton



Las Leyes de Newton, también conocidas como Leyes del movimiento de Newton, son tres principios a partir de los cuales se explican la mayor parte de los problemas planteados por la dinámica, en particular aquellos relativos al movimiento de los cuerpos. Revolucionaron los conceptos básicos de la física y el movimiento de los cuerpos en el universo

sistema internacional de unidades

Las unidades del SI son la referencia internacional de las indicaciones de los instrumentos de medida y a las que están referidas a través de una cadena ininterrumpida de calibraciones o comparaciones. Esto permite alcanzar la equivalencia de las medidas realizadas por instrumentos similares, utilizados y calibrados en lugares apartados y por ende asegurar, sin la necesidad de ensayos y mediciones duplicadas, el cumplimiento de las características de los objetos que circuEl Sistema Internacional de Unidades consta de siete unidades básicas. Son las unidades utilizadas para expresar las magnitudes físicas definidas como básicas, a partir de las cuales se definen las demás